
O f f i c e o f C h i l d S u p p o r t E n f o r c e m e n t

Appendix 9. Amount of Support Ordered Pseudocode
Step 1. Convert all payments to monthly values. Because support orders can be paid over a wide range of time

periods, it is necessary to select one time measurement so that all orders can be compared accurately. For the
purpose of this example, a business year of 360 days is used.

Input Fields Required Output Fields Created / Modified

NCP_Data.Case-ID
NCP_Data.Order-Frequency
NCP_Data.Amount_of_Support_Ordered
NCP_Data.Billing_Status

Support.Case-ID
Temp.Order-Frequency
Temp. Amount_of_Support_Ordered
Support.TMonthly_Amount
Support.Billing_Status
Support.Date_Modified

Pseudocode Reason
SELECT
NCP_Data.Case_ID,
NCP_Data.[Order-Frequency],

NCP_Data.Amount_of_Support_Ordered
FROM NCP_Data;
For Each NCP_Data DO
Case Select of NCP_Data[Order-Frequency]

“A”: Support.TMonthly_Amount =
INT(NCP_Data.Amount_of_Support_Ordered/12)

“B”: Support.TMonthly_Amount =
INT((NCP_Data.Amount_of_Support_Ordered/14)*30)

“E”: Support.TMonthly_Amount =
INT(NCP_Data.Amount_of_Support_Ordered/6)

“Q”: Support.TMonthly_Amount =
INT(NCP_Data.Amount_of_Support_Ordered/3)

“M”: Support.TMonthly_Amount =
INT(NCP_Data.Amount_of_Support_Ordered)

“S”: Support.TMonthly_Amount =
INT(NCP_Data.Amount_of_Support_Ordered*2)

“W”: Support.TMonthly_Amount =
INT((NCP_Data.Amount_of_Support_Ordered/7)*30)

OTHER : Writeln(ErrorLog, “Order Frequency out of range. Case ID:
“,NCP_Data.Case-ID, “ Frequency: “,NCP_Data.[Order-Frequency])
Next Record
END Case
Support.Case-ID = NCP_Data.Case-ID
Temp.Order-Frequency = NCP_Data.[Order-Frequency]
DNCP_Data.Order-Freq-Amount =
NCP_Data.Amount_of_Support_Ordered
Support.Billing_Status = NCP_Data.Billing_Status
Support.Date_Modified = NOW()
Next Record
Done

Square brackets [] around field name act as quotation marks, otherwise
the hyphen in the field name would be interpreted as a minus sign.

A = Annually; divide amount by 12 and return the integer value

B = Biweekly; divide by 14, then multiply the result by 30 and return the
integer value

E = Semiannually; divide by 6 and return the integer value

Q = Quarterly; divide by 3 and return the integer value

M = Monthly; return the integer value

S = Semimonthly; multiply by 2 and return integer value

W = Weekly; divide biweekly by 7, then multiply the result by 30 and
return the integer value

If Frequency is outside range, make error log entry.

Break out and return to top of loop.

Update Support Record.

Loop until all records have been acted on.

 Appendix 9: Amount of Support Ordered Pseudocode
 1

O f f i c e o f C h i l d S u p p o r t E n f o r c e m e n t

Example

Input
Case_ID Order-Frequency Order-Freq-Amount Billing_Status

45447 Quarterly $150.83 Current
45456 Weekly $42.50 Delinquent
45457 Biweekly $196.00 Enforcement

Output
Case_ID Date_Modified Order-Frequency Amount Monthly Status

45446 6/11/2002 1:26:56 PM Monthly $129.50 $130.00 Current
45447 6/11/2002 1:26:56 PM Quarterly $150.83 $50.00 Current
45456 6/11/2002 1:26:56 PM Weekly $42.50 $182.00 Delinquent
45457 6/11/2002 1:26:56 PM Biweekly $196.00 $420.00 Enforcement

Step 2. Determine range of payment amounts and number of NCPs for each amount.
Input Fields Required Output Fields Created / Modified

Support.TMonthly_Amount Report
Pseudocode Reason

SELECT
Support.TMonthly_Amount, Count(Support.TMonthly_Amount) AS
CountOfMonthly_Amount

FROM Support;

GROUP BY Support.TMonthly_Amount;

Same as for NCP Age Count

Example

Input
Monthly_Amount

$50.00
$182.00
$420.00
$130.00

Output
Monthly_Amount CountOfMonthly_Amount

$50.00 1
$130.00 1
$182.00 1
$420.00 1

After this report is generated, a determination must be made on how to distribute the count of amounts across
the entire NCP population. As with the NCP_Age distributions, low values of monthly amounts with a
corresponding low number of NCPs paying the amounts might be considered outriders. The same is true for the
high end of the distribution. The goal is to distribute the amounts in a manner that will yield meaningful, actionable
discriminators.

NOTE: The activities performed before this point are necessary to develop the design of the data mart.
The steps that follow normally occur in the ETL process. They are included here to maintain the flow of
the discussion.

 Appendix 9: Amount of Support Ordered Pseudocode
 2

O f f i c e o f C h i l d S u p p o r t E n f o r c e m e n t

Step 3. Code Support.TAmount_Code based on distribution plan developed.
Input Fields Required Output Fields Created/Modified

Support.Case-ID
Support.TMonthly_Amount
Support.Date_Modified

Support.TAmount_Code
Support.Date_Modified

Pseudocode Reason
SELECT
Support.Case-ID,
Support.TMonthly_Amount, Support.Date_Modified,
FROM Support;

For Each Support, DO
Case Select Support.TMonthly_Amount of
1..100: Support.TAmount_Code = 100
101..200: Support.TAmount_Code = 200
201..300: Support.TAmount_Code = 300
301..400: Support.TAmount_Code = 400
401..500: Support.TAmount_Code = 500
501..600: Support.TAmount_Code = 600
601..700: Support.TAmount_Code = 700
701..800: Support.TAmount_Code = 800
801..900: Support.TAmount_Code = 900
901..1000: Support.TAmount_Code = 1000
Other: Writeln(ErrorLog, ”Monthly Amount not within specified ranges.
Case ID: “, Support.Case-ID, “ Amount: “Support.TMonthly_Amount)
Next Record
End Case
Support.Date_Modified = Now()
Next Record

The dividing points and the code were arbitrarily chosen.
The code 100 could just as easily represent values from
51 to 151. Numeric codes were chosen because they
reflect the content of the data more accurately.

Break out and return to top of loop.

Continue to loop back to the program until all records
have been processed.

Example

Input
Case_ID Date_Modified Monthly_Amount

45447 6/11/2002 1:26:56 PM $50.00
45446 6/11/2002 1:26:56 PM $130.00
45456 6/11/2002 1:26:56 PM $182.00
45457 6/11/2002 1:26:56 PM $420.00

Output
Case_ID Monthly_Amount Amount_Code Date_Modified

45447 $50.00 100 6/11/2002 3:33:21 PM
45446 $130.00 200 6/11/2002 3:33:21 PM
45456 $182.00 200 6/11/2002 3:33:21 PM
45457 $420.00 500 6/11/2002 3:33:21 PM

 Appendix 9: Amount of Support Ordered Pseudocode
 3

O f f i c e o f C h i l d S u p p o r t E n f o r c e m e n t

Step 4. Distribute Order Amount based on billing status and amount code. This process is fully within the data
mart proper and represents the first pieces of information retrieved from it. There are at least three ways to design
this step. Each has its advantages and disadvantages.

Methods for Developing Order Amount Table

Method Advantages Disadvantages
Dynamic—The table is generated and
connected to the dimension tables when query
is executed.

Information presented is most up-to-date
information available.

High system load. Actual value depends on the
number of records that have to be acted on.
More complex to develop.
Higher-order tools required.

Aggregation Record Faster response.
Less complex.
Lower-order tools can be used.

Data reloaded on a scheduled basis and so is
not necessarily the most current.
Moderate system load, but usually performed
in off-peak hours.
Less flexibility.
Ranges embedded with field names.

Example: Code_100_total_Count, Code_100_Paying, Code_100_Non-paying,… Code_N_total_Count, Code_N_Paying, Code_N_Non-paying
Summary Records Faster response.

Simple structure.
Highly flexible.
Lowest-order tools can be used

Data reloaded on a scheduled basis and so is
not necessarily the most current.
Moderate system load, but usually performed
in off-peak hours.
Repeated read-writes can be eliminated
through the use of arrays for a minor increase
in complexity.

Example: Code_ID (value stored within the field), Total_Count, Paying_Count, Non_Paying_Count.
1 record for each code amount.

The final portion of pseudocode for this process will be developed using the Summary Records Model.

 Appendix 9: Amount of Support Ordered Pseudocode
 4

O f f i c e o f C h i l d S u p p o r t E n f o r c e m e n t

Step 5. Load Summary Records
Input Fields Required Output Fields Created/Modified

Support.Case-ID
Support.TAmount_Code
Support.Billing_Status

DNCP_Amount_Ordered_Summary.Code
DNCP_Amount_Ordered_Summary.Total_Count
DNCP_Amount_Ordered_Summary.Paying_Count
DNCP_Amount_Ordered_Summary.Non_Paying_Count
DNCP_Amount_Ordered_Summary.Date_Created
DNCP_Amount_Ordered_Summary.Date_Modified

Pseudocode (Comments Follow the “//”)
Delete existing DNCP_Amount_Ordered_Summary Records // Ensure no false counts happen. Start with clean slate.
Establish Array[1..N] of Summary_Record Type // Summary record type is a mirror image of DNCP_Amount_Ordered_Summary.
An array is created in order to reduce the number of read / writes to the hard disk. After all of the Support records are read the
array will be written out to DNCP_Amount_Ordered_Summary records. N represents the total number of Amount Codes
previously created. In our example this will be 10.
ArrayTop = N*100 // This is a check value that prevents the program from trying to access a non-existent array value. There are
many static ways and dynamic functions available in various products to achieve the same result. This is the most
rudimentary method and is included here to serve as a reminder to always protect the array boundaries.
ArrayBottom = 1 //Same purpose as ArrayTop, protects lower boundary of array.
Initialize all values in Summary_Record Array to 0 // Set all counters in array to known value.
For I = 1 to N
Summary_Record[I].Code = I * 100 // Initialize the values in the Code field for each iteration of the array. Note the use of
mathematical functions to establish array element values. Because the amount codes in this example range from 100 to 1,000
in increments of 100, it requires simple math operations to place values into the array and calculate the correct array index.
More complex amount codes will require additional manipulation to implement this indexing method.
Next I
Select Support
For Each Support DO

IF Support.TAmount_Code > ArrayTop then
Writeln(ErrorLog, “Amount Code higher than expected. Case ID: “, DNCP_Case_ID, “ Amount_Code: “, Support_Amount_Code)
//Amount code exceeds ArrayTop value
Next Record //Break out and return to top of loop

IF Support.TAmount_Code < ArrayBottom then
Writeln(ErrorLog, “Amount Code lower than expected. Case ID: “, DNCP_Case_ID, “ Amount_Code: “, Support_Amount_Code) //
Amount code less than ArrayBottom value
Next Record // Break out and return to top of loop

Summary_Record[Support.TAmount_Code/100].count = Summary_Record[Support.TAmount_Code/100].count + 1 // Using the value
in Amount_Code to select the index in the Summary_Record Array. For example an Amount_Code of 100 would evaluate to 1.
IF Support.Billing_Status = “Current” then
 Summary_Record[Support.TAmount_Code/100].Paying_count =
 Summary_Record[Support.TAmount_Code/100].Paying_count + 1
Else// If Billing_Status is equal to “Current” then increment the paying count, else increment the nonpaying count.
 Summary_Record[Support.TAmount_Code/100].Non_Paying_count =
 Summary_Record[Support.TAmount_Code/100].Non_Paying_count + 1
Next Record // Return to the top of the loop and process the next record. Repeat until all Support records have be processed.

For I = 1 to N \\ Write the results out to the Amount_Ordered_Summary Table
DNCP_Amount_Ordered_Summary.Code = Summary_Record[I].Code
DNCP_Amount_Ordered_Summary.Total_count = Summary_Record[I].count
DNCP_Amount_Ordered_Summary.Paying_Count = Summary_Record[I].Paying_count
DNCP_Amount_Ordered_Summary.Non_Paying_Count = Summary_Record[I].Non_Paying_count
DNCP_Amount_Ordered_Summary.Date_Created = Now()
DNCP_Amount_Ordered_Summary.Date_Modified = Now()
NEXT N
DONE

 Appendix 9: Amount of Support Ordered Pseudocode
 5

O f f i c e o f C h i l d S u p p o r t E n f o r c e m e n t

 Appendix 9: Amount of Support Ordered Pseudocode
 6

The Results
Amount of Support Ordered

Non_paying 66 112 144 146 150 121 250 200 90 60
Paying 101 212 313 356 195 112 150 100 60 40
Total 167 324 457 502 345 233 400 300 150 100
Amount $100 $200 $300 $400 $500 $600 $700 $800 $900 $1,000

	Appendix 9. Amount of Support Ordered Pseudocode
	Example
	Input
	Output

	Example
	Input
	Output

	Example
	Input
	Output

